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ABSTRACT

The development of a unifying framework among direct

numerical simulations, large-eddy simulations, and statisti-

cally averaged formulations of the Navier-Stokes equations,

is of current interest. Toward that goal, the properties of

the residual (subgrid-scale) stress of the temporally �ltered

Navier-Stokes equations are carefully examined. Causal

time-domain�lters, parameterizedby a temporal�lter width

0 < � < 1, are considered. For several reasons, the

di�erential forms of such �lters are preferred to their corre-

sponding integral forms; among these, storage requirements

for di�erential forms are typically much less than for inte-

gral forms and, for some �lters, are independent of �. The

behavior of the residual stress in the limits of both vanishing

and in�nite �lter widths is examined. It is shown analyti-

cally that, in the limit � ! 0, the residual stress vanishes, in

which case the Navier-Stokes equations are recovered from

the temporally �ltered equations. Alternately, in the limit

� ! 1, the residual stress is equivalent to the long-time

averaged stress, and the Reynolds-averaged Navier-Stokes

equations are recovered from the temporally �ltered equa-

tions. The predicted behavior at the asymptotic limits of

�lter width is further validated by numerical simulations of

the temporally �ltered forced, viscous Burger's equation. Fi-

nally, �nite �lter widths are also considered, and a priori

analyses of temporal similarity and temporal approximate

deconvolution models of the residual stress are conducted.

INTRODUCTION

The Navier-Stokes equations can be solved numerically

to predict turbulent 
ows; however, due to the enormous

computational expense required to extract a solution from

these equations for 
ows of engineering interest, it has

been necessary in most cases to revert to alternate formula-

tions. For current purposes, three computational approaches

are considered: direct numerical simulation (DNS), large--

eddy simulation (LES), and Reynolds-averaged Navier--

Stokes (RANS) computations. These di�er primarily in the

level of approximation required to achieve closure.

For LES, the separation of the �eld variables into re-

solved and unresolved (spatial) scales is e�ected by �ltering

the �elds with a low-pass �lter. Filtering the momentum

equations generates residual (subgrid-scale) stresses that re-

quire closure either by modeling or approximation. Recent

advances such as dynamic modeling (Germano, 1991) and

deconvolution methods (Domaradzki and Saiki 1997, Stolz

and Adams 1999) have made LES practical for application

to certain 
ows of engineering interest (Moin and Jimenez,

1993).

Long-time averaging of the Navier-Stokes equations re-

sults in the RANS equations for the time-independent mean

state. RANS methodology is generally applied to statisti-

cally steady 
ows. To close the system of equations, a model

is needed for the Reynolds-stress tensor. Although RANS is

computationally appealing, it places a heavy burden on the

Reynolds-stress model, which must incorporate the e�ects

of all the unsteady motions upon the mean.

While the formal linkage of the LES and RANS equations



has been well established (Germano 1999, 2001), it is of in-

terest to investigate whether this linkage can be extended

practically by developing �ltering and averaging procedures

that yield mutually consistent solution �elds. A possible

unifying context for these methodologies is a�orded by �l-

ter theory. However, the linkage between LES and RANS

may be more natural within the context of time-domain �l-

tering rather than the traditional spatial �ltering commonly

used in LES. Accordingly, the present study focuses on the

temporally �ltered Navier-Stokes (TFNS) equations and the

resultant residual-stress �elds.

In the next section causal time-domain �lters are dis-

cussed, and di�erential forms are derived for two candidate

�lters: an exponential �lter and a Heaviside �lter. The

TFNS equations are formulated and analyses of the asymp-

totic behaviors of the residual stress for limiting values of

�lter width are presented. Finally, temporal residual-stress

models are proposed for the case of �nite �lter width. Fi-

nally, the numerical solution of the forced, viscous Burger's

equation is used to further validate the analytical results

as well as to evaluate the proposed temporal residual-stress

models by a priori analyses.

TEMPORALLY FILTERED NAVIER-STOKES EQUATIONS

Time-domain �lters are classi�ed as causal or acausal

depending upon whether they are applicable to real-time or

a posteriori data processing, respectively. The interest here

lies in real-time applications for which only causal �ltering is

appropriate; accordingly, the focus in this study is restricted

to causal �lters. While aspects of time-domain �lters have

been discussed previously in this context (Pruett 2000), it is

worthwhile to reiterate some fundamental relationships for

completeness.

Let f(t) be a continuous function of time t. A causal

linear �lter is readily constructed by the integral operator

�f(t;�) =

Z t

�1

G(� � t;�)f(�)d�; (1)

where G is a parameterized �lter kernel, and the parameter

� is the �lter width. In general, admissible kernels must

satisfy the following property:

G(t; �) �
1

�
g

�
t

�

�
; (2)

where g is any integrable function such that

g(t) � 0;

Z
0

�1

g(t)dt = 1 and g(0) = 1: (3)

The non-negativity and normalization constraints in Eq. (3)

imply that

lim
t!�1

g(t) = 0; (4)

and su�ce for G to approach a Dirac delta function as its

parameter � ! 0; that is,

lim
�!0

�f(t;�) = lim
�!0

Z t

�1

G(� � t;�)f(�)d�

=

Z t

�1

�(� � t)f(�)d�

= f(t): (5)

Two examples of simple, useful �lters are obtained by use of

an exponential function and a Heaviside function as kernels.

For the exponential function, the kernel is

g(t) = exp(t)! G(t; �) =
exp(t=�)

�
; (6)

and the resulting integral operator in Eq. (1) is

�f(t;�) =
1

�

Z t

�1

exp

�
� � t

�

�
f(�)d�: (7)

If g(t) = h(t+ 1), with h the Heaviside function, then

�f(t;�) =
1

�

Z t

t��

f(�)d�: (8)

A drawback of the integral formulations just presented

is the need to retain the long-time history of the solution

�eld. However, by considering instead di�erential forms of

the �lter operators, storage requirements are reduced signi�-

cantly, subject to the intrinsic storage needs of the numerical

time-advancement scheme itself (for example, low-storage

Runge-Kutta). By di�erentiating Eqs. (7) and (8), the dif-

ferential forms of the exponential and Heaviside �lters are

given by
@

@t
�f(t;�) =

f(t)� �f(t;�)

�
; and (9)

@

@t
�f(t;�) =

f(t)� f(t��)

�
; (10)

respectively.

When causal �ltering is applied to a temporally dis-

cretized problem with a time increment of �t, the action

of the �lter is naturally parameterized by the �lter-width

ratio r de�ned as

r =
�

�t
: (11)

In order to illustrate the discrete di�erential �ltering pro-

cess, a 2�-periodic time series is processedby the exponential

di�erential �lter given in Eq. (9). The time series is gen-

erated from a -3/2 power-law decay in Fourier frequency

space, and the phases are assigned randomly. The continu-

ous signal is then sampled at a rate of 512 per period and

replicated for three periods. The �ltered time series, �f , is

then generated by solving Eq. (9) from the initial condi-

tion �f(0;�) = f(0). There are many appropriate numerical

integration schemes. Because the right-hand side of the dif-

ferential form of a linear �lter is itself linear, fully implicit

Adams-Moultonmethods are particularlyattractive because

of their accuracy and e�ciency. Here, standard fourth-

order Adams-Moulton methodology is used. The method

is started with initial steps of orders one, two, and three,

respectively.

The �lter-width ratio, r, is the only parameter of the

di�erential �lter. In general, the larger the value of r, the

more dissipative the �lter. (In this context, a \dissipative"

low-pass �lter is one with signi�cant and broad-band atten-

uation of high-frequency Fourier harmonics.) The method

remains viable for all values of �lter-width ratio (0 < r).

For r � 0, the evolution equation becomes sti�, and small

time steps are necessary. Figure 1 compares the �ltered time

series with the un�ltered signal for selected values of the

�lter-width ratio r. As r increases, the output time series

becomes smoother and its amplitude diminishes due to the

removal of energy at the higher frequencies. As is typical

for causal �lters, high levels of numerical dissipation gener-

ate signi�cant phase lag in the output relative to the input.

Figure 2 compares the input signal with the original out-
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Figure 1: Di�erentially �ltered time series f(t).

put signal and with an output that is phase compensated

by r time steps. The phase-compensated signal is an ex-

cellent representation of the input, minus its high-frequency

components.
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Figure 2: Original, exponentially �ltered, and phase-com-

pensated time series f(t) for r = 32.

Temporal, causal �ltering of the Navier-Stokes equations

using Eq. (1) leads to the following form of the TFNS equa-

tions:

@uj

@xj
= 0 (12)

@ui

@t
+

@(uiuj)

@xj
= �

@p

@xi
+ �

@2ui

@xj@xj
�

@[�R]ij

@xj
;(13)

where ui is the velocity, p is the pressure, and � is the kine-

matic viscosity. An overbar denotes a temporal grid-�ltered

quantity, and [�R]ij represents the temporal residual-stress

tensor de�ned as

[�R]ij � uiuj � uiuj : (14)

Provided that �ltering and di�erentiation operations com-

mute, the TFNS equations are formally identical to the

spatially �ltered Navier-Stokes equations. As pointed out

previously by Pruett (2000), commutativity is natural for

temporal �lters but remains problematic for spatial ones

(Blaisdell 1997, Vasilyev et al. 1998). It is now recognized

(Pruett 2001, Pruett et al. 2001, De Stefano and Vasilyev

2001) that this formal equivalence does not imply quantita-

tive equivalence of the residual-stress �elds. In general, for

spatial or temporal grid �lters, the residual stress depends

stronglyupon the �lter, particularlyupon its �lter width and

order property, which in
uence both the magnitude and the

distribution of the residual stress. The implication of this

growing awareness is that the residual-stress model cannot

be independent of the choice of the �lter. To make explicit

its formal dependence upon the speci�c temporal �lter, the

residual stress is denoted by [�R]ij(�) where appropriate.

Limiting Behaviors

Of interest is the e�ect of �lter width � on the residual

stress [�R]ij . It is easily shown that the [�R]ij vanishes in

the limit � ! 0. In this limit, the kernel function reduces

to a Dirac delta function (see Eq. (5)) so that

lim
�!0

[�R]ij(t; x;�) = lim
�!0

(uiuj � uiuj)

= lim
�!0

(uiuj � uiuj) = 0: (15)

The vanishing of the temporal residual stress, coupled with

the replacementof the other �ltered quantitiesby their un�l-

tered counterparts, leads to the recovery of the Navier-Stokes

equations from the TFNS equations in the limit �! 0.

The other limit of interest is � ! 1. However, before

examining the behavior of the residual stress in this limit,

it is useful to examine some characteristics of the �ltered

velocity �eld itself. It follows from the di�erential forms of

either the exponential or Heaviside di�erential �lters given

in Eqs. (9) or (10) that

lim
�!1

@�ui

@t
(t; x;�) = 0; (16)

where both ui and �ui are assumed bounded. The condition

above establishes that �ui(t; x;1) is actually independent of

time t. (In fact, for Eq. (16) to hold, it su�ces that ui
is bounded and that jg0(t)j is integrable on (�1; 0]. Thus,

Eq. (16) applies to a wide class of �lters.) For the causal

temporal �lter de�ned in Eq. (1) with the Heaviside kernel

(for convenience), �ui(t; x;1) can be written as

lim
�!1

�ui(t; x; �) = �ui(0; x;1) = lim
�!1

1

�

Z
0

��

ui(�; x)d�

(17)

Equation (17) holds for any �lter for which H(0) = 1, which

is typical of low-pass �lters. The right-hand-side of Eq. (17)

simply de�nes the long-time average of the variable ui(t; x),

which, for a stationary process, is equivalent to the ensemble

average according to the ergodic hypothesis. That is, for a

stationary 
ow

�ui(0; x;1) = Efui(t; x)g; (18)

where Ef g denotes the expected value (or ensemble av-

erage). However, Eq. (16) has shown that �ui(t; x;1) is

constant with respect to time so that

�ui(t; x;1) = �ui(0; x;1) = Efui(t; x)g = Ui(x); (19)

and

lim
�!1

@

@t
ui(t; x;1) =

@

@t
Efui(t; x)g = 0: (20)

In the current time-�ltered approach, Eq. (19) provides the

link between the resolved motions of the variable ui(t; x)

and the ensemble mean Ui(x). Because the variable ui(t; x)

can be partitioned either into a sum of resolved �ui(t; x;1)

and temporally unresolved motions ~ui(t; x), or into a sum

of time mean Ui(x) and 
uctuating u0i(t; x) quantities, it

follows from Eq. (19) that

~ui(t; x;1) = u0i(t; x): (21)

In addition to the equality between the resolved and mean

�elds in the limit, Eq. (21) shows the linkage between the



temporally unresolved and 
uctuating motions. With these

results, it is now possible to examine the limiting behavior

of the residual stress.

By the linearity of the �lter operator, the residual stress

de�ned in Eq. (14) can be written as

lim
�!1

[�R]ij(�) = lim�!1

�
(uiuj + ui~uj

+~uiuj + ~ui~uj)� uiuj
�
; (22)

where the instantaneous velocity �eld has been partitioned

into resolved and unresolved parts. Because Eqs. (18) and

(19) establish an equality between the resolved and ensemble

mean �elds, and the residual and 
uctuating �elds, respec-

tively, Eq. (22) can be simpli�ed to

lim
�!1

[�R]ij(�) = Efu0jEfuig+ u0iEfujg+ u0iu
0

jg

= Efu0iu
0

jg = �ij: (23)

That is, for a stationary 
ow the residual stress ([�R]ij)

asymptotically approaches the Reynolds stress (�ij) as � !

1.

Finite Filter Width

For �nite �lter width, the residual stress represents the

dynamics of a broad spectral range of motions. The TFNS

equations provide a governing set of equations suitable for

time-�ltered LES (Pruett, 2000) (or TLES), for which (ac-

curate) modeling of [�R]ij is required for closure.

The temporal variants of two well-known residual-stress

models for [�R]ij are considered: Bardina's scale-similarity

model (Bardina et al., 1980) (SSM); and the approximatede-

convolution model (ADM) of Stolz and Adams (1999). The

time-�ltered counterparts of these models are referred to as

the temporal scale-similaritymodel (TSSM) and the tempo-

ral approximate deconvolutionmodel (TADM), respectively.

Consider �rst a TSSM that is formally equivalent to the

Bardina model (Bardina et al., 1980),

[�R]ij � �ui�uj � ��ui��uj; (TSSM): (24)

As in the Bardina model, the same (temporal) �lter width

is used for the primary and secondary (test) �lters. Next,

the TADM considered is formally equivalent to the second

of the ADM models presented by Stolz and Adams (1999),

[�R]ij � vivj � �vi�vj ; (TADM); (25)

where vi is an approximate deconvolution of �ui; that is, vi
approximates ui based upon approximately de�ltering (de-

convolving) �ui. Following Stolz and Adams, the zeroth-

and �rst-order deconvolutions of �ui yield vi = �ui and

vi = 2�ui � ��ui, respectively. Higher-order (and more ac-

curate) deconvolutions are possible. Note that the TADM

(ADM) generalizes the TSSM (SSM), because the zeroth-

order deconvolution is the TSSM. (Appropriately, Stolz and

Adams (1999) refer to the second of their ADM models as

the generalized SSM model.)

In the next section, an a priori analysis of the predic-

tive capability of these two residual-stress models will be

performed.

FORCED VISCOUS BURGER'S EQUATION

While it is desirable and ultimately necessary to validate

the analytical results previously established in simulationsof

the full TFNS equations, the wide range of parameter val-

ues considered here renders such analyses cost prohibitive.

However, it is possible to illustrate the dependence of the

residual stress upon the temporal �lter width, in general,

and the asymptotic behaviors discussed previously, in par-

ticular, by simulations of a spatially one-dimensional model

problem. To this end, consider the forced, viscous Burger's

equation (VBE), written in the form

@u

@t
+

1

2

@(u2)

@x
= �

@2u

@x2
+ f(t;x) ; (0 < x < 2�): (26)

with u(t; x) a velocity, f(t; x) an imposed forcing function,

and � a viscosity. The initial condition is u(0; x) = 1. With-

out forcing, the initial condition results in a velocity �eld

that is constant for all time and space. Moreover, any per-

turbations of that �eld decay toward zero, so that constant

\stirring" is required to maintain high-intensity 
uctuations

(Eswaran and Pope, 1988). This equation can be solved

accurately by a Galerkin Fourier spectral method in space

coupled with classical 4th-order Runge-Kutta time advance-

ment. A Fourier ansatz is assumed for u and substituted

into the governing equation. This results in a system of cou-

pled ordinary di�erential equations for the complex Fourier

coe�cients Uk, k = �n=2; :::;�1; 0;+1:::;+n=2. (Due to

conjugate symmetry, only n=2+1 positive modes are solved

for explicitly.) The equations are coupled through their non-

linear terms, which are evaluated exactly in Fourier space by

Cauchy products. Hence, explicit de-aliasing is unnecessary.

For this forced case, n = 256, and each Fourier mode in

the band 1 � k � kf is independently subjected to periodic

forcing Fk(t) such that Fk(t) = A�k exp(�!kt) with real fre-

quency !k = k!. The band limit kf = 32, the fundamental

frequency ! = 1, and the amplitude A = 0:4 (the same for

all modes) are input parameters, and the time increment

is 0:005 throughout. The complex phases �k = exp(��k)

are assigned initially by random numbers �k uniformly dis-

tributed on [0;2�]. Thereafter, they remain �xed. As will be

shown, after a long-time evolution, a statistically steady 
ow

results. Because, at small �, the viscous Burger's equation

admits solutions with steep shock fronts, only a moderately

large value of � is practical. For the value � = 1=300 and

forcing distribution, the 
ow is highly resolved in both time

and space, with Fourier amplitudes at the highest wavenum-

bers on the order of 10�10.

Causally �ltering the forced VBE results in the follow-

ing equation, which can be considered as a one-dimensional

analog of the TFNS equation given in Eq. (13):

@�u

@t
+
1

2

@(�u�u)

@x
= �

@2�u

@x2
+ �f(t; x)�

1

2

@[�R]

@x
; (0 < x < 2�):

(27)

Filtering results in the appearance of a residual stress given

by

[�R] = uu � �u�u: (28)

In Fig. 3, the instantaneous un�ltered velocity �eld, ob-

tained from the solution of Eq. (26) at t = 10 (�t = 0:005),

is compared with the �ltered �eld, which satis�es Eq. (27),

for selected values of the �lter-width ratio r. Clearly, �lter-

ing in time to remove high frequencies e�ects the removal of

energy at high wavenumbers as well.

As implied previously, the behaviors of the residual stress

for limiting values of the temporal �lter width � are key

results of the temporally �lteredmethodology being studied.

To illustrate these predicted behaviors in the limits � ! 0

and �!1, the model problem is particularly useful.
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Figure 3: Instantaneous and causally �ltered velocity �elds

at t = 10 for �lter-width ratios r = 1, r = 4, r = 8, r = 16,

and r = 32.
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Figure 4: Instantaneous residual stress [�R] at t = 10 for

�lter-width ratios r = 1, r = 8, and r = 32.

Limiting Behavior of Residual Stress

The behavior in the limit � ! 0 can be veri�ed nu-

merically by using successively smaller temporal grid-�lter

widths to process the numerical solution u(t; x) of the VBE.

The exact residual stress (28) is evaluated to the accuracy

of the numerical scheme by solving, in addition to Eq. (26),

the �lter evolution equations (cf. Eq. (9))

@u

@t
=

u� u

�
; and

@uu

@t
=

uu � uu

�
(29)

from initial conditions �u(0; x) = u(0; x) and uu(0; x) =

u2(0; x). Here, these equations (29) are advanced in time

using the standard fourth-order Adams-Moulton method.

(The fourth-order Runge-Kutta methodology used to ad-

vance the VBE would also be suitable for all the �lter

equations; however, following the Runge-Kutta update of

the solution by the 4th-orderAdams-Moulton updates of the

�ltered quantities has the algorithmic advantageof compart-

mentalizing the code.) While these Eqs. (29) apply to the

exponential �lter, an analogous set could be derived for the

Heaviside �lter.

Figure 4 compares the exact, instantaneous residual

stress [�R] at t = 10 determined from Eqs. (26) and (29)

for selected values of the �lter-width ratio r (= �=�t). As

expected, the amplitude envelope of the residual stress tends

toward zero as r decreases.

The behavior of the velocity and residual stress �elds in

the limit of � ! 1 can also be analyzed. As was shown

in previously, the limiting form of the residual stress [�R]

approaches the long-time average stress �eld � . While this

can be shown by considering successively larger values of the
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Figure 5: Instantaneous residual stress [�R] at t = 240 for

selected values of �lter-width ratio r: long time stress

� .

�lter-width ratio r, it is �rst necessary to establish that the

solution of the forced, viscous Burger's equation evolves to a

statistically steady (stationary) state. Thus, it is necessary

to verify the stationarity of the numerical solution, because

the equality of the residual stress and Reynolds stress in the

long-time limit is based on this assumption. (See Eqs. (19)

and (20).)

The long-time average and the spatial average of the in-

stantaneousvelocity �eld u(t; x) are both equal to unity. The


uctuating �eld u0(t; x) is extracted at each time step sim-

ply by subtracting this mean value from u(t; x). It is veri�ed

that the (long-time) solution of the forced viscous Burger's

equation is indeed stationary. With the stationarity of the

solution of the forced VBE established, it is possible to eval-

uate the e�ect of large �lter width on the residual stress. In

Fig. 5 the long-time averaged stress � is compared with the

instantaneous residual stress [�R](�) at t = 240 for di�erent

values of the �lter-width ratio r. The stress � is computed

by averaging over an interval of duration � = 20 during the

period in which the 
ow is essentially stationary (t = 240

to 260). As expected, the residual stress [�R], computed in

real time using the exponential �lter, appears to converge

toward the value of � as � becomes large.

Residual Stress for Finite Filter Width

With the limiting behavior of the �lter-width � on [�R]

established for the forced VBE, it remains only to evalu-

ate the behavior of [�R] for �nite �lter width. As described

previously, the exact residual stress is extracted from the

solutions of Eqs. (26) and (29). The modeled residual stress

can be obtained from these equations by further appending

the evolution equations

@u

@t
=

u� u

�
;

@�u�u

@t
=

�u�u� �u�u

�
; (30)

and
@�v

@t
=

v � �v

�
;

@vv

@t
=

vv � vv

�
: (31)

Equation (30) is used in conjunction with the TSSM, sub-

ject to the initial conditions ��u(0; x) = u(0; x) and �u�u(0; x) =

u2(0; x). For the TADM, both sets, Eqs. (30) and Eq.

(31) are involved, subject to the additional initial conditions

�v(0; x) = u(0; x) and vv(0; x) = u2(0; x). As before, these

di�erential �lter equations are advanced by the Adams-

Moulton method.

In Fig. 6, the exact ([�R]) and modeled ([�R](TSSM) and

[�R](TADM)) residual stresses are compared at t = 20. At

this instant, the 
ow statistics are still evolving in time,
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Figure 6: Instantaneous exact and modeled (TSSM, TADM)

residual stresses ([�R]) at t = 20.

for in the �nite-� case, there is no reason to presuppose

stationarity. A fairly dissipative �lter of ratio r = 16 is

used for the a priori analysis. Note that for both the exact

and modeled residual stresses, [�R] > 0 at all times. This

realizability property (Vreman et al., 1994) is a consequence

of the positivity of the �lter kernel established in Eq. (3).

Both the TSSM and TADM correlate relativelywell with

[�R], with correlation coe�cients on the order of 0.8 and 0.9,

respectively. Correlations, however, re
ect distribution but

not amplitude. In general, the TADM has a higher corre-

lation, and its amplitude tends to be more nearly correct.

That the TADM performs well with only �rst-order decon-

volution is surprising (as Stolz and Adams (1999) employ

5th order).

CONCLUSIONS

The behavior of the residual stress of the temporally

�ltered Navier-Stokes (TFNS) equations was studied for a

class of di�erential, causal time-domain�lters parameterized

by the temporal �lter width �. The e�ect of �lter width on

the residual stress was examined for the asymptotic limits

� ! 0 and � ! 1 and for the case of �nite �lter width.

It was shown analytically that, in the limit � ! 0, the

residual stress vanishes so that the Navier-Stokes equations

are recovered from the temporally �ltered equations. Alter-

nately, in the limit � ! 1, for a statistically steady 
ow,

the residual stress asymptotically approaches the Reynolds

stress, and the Reynolds-averaged Navier-Stokes equations

are recovered from the temporally �ltered equations. These

asymptotic results were veri�ed numerically through sim-

ulations of the temporally �ltered forced, viscous Burger's

equation. For the case of �nite �lter widths, two residual-

stress models were considered that are temporal analogs of

spatial SGS-stress models. These were a temporal scale sim-

ilarity model (TSSM) and a temporal approximate deconvo-

lution model (TADM). A priori analyses of these models

were performed using highly accurate numerical solutions

of the �ltered forced, viscous Burger's equation. The mod-

els were found to approximately replicate the exact residual

stress.

It has been shown analytically that the residual stress

of the TFNS equations is strongly dependent upon the tem-

poral �lter width. This fact, coupled with computational

results from simulating the forced, viscous Burger's equation

over a wide range of temporal �lter widths, suggests that full

simulations of the TFNS equations should behave like DNS

for small temporal �lter widths and like RANS for very large

ones. For �nite �lter widths the formulationdescribes a tem-

porally �ltered LES or TLES. These results have provided

a bridging mechanism between solutions obtained directly

from the Navier-Stokes equations and those obtained from

the Reynolds-averaged Navier-Stokes equations.
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